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Validation, mapping, and modeling efforts require ac- cells. We recommend that aggregation of fine-grain mea-
surements during validation of the Moderate Resolutioncurate methods to transform process rates and ecosystem

attributes estimated from small field plots to the 250– Imaging Spectrometer (MODIS) products be based on
continuous variables to reduce errors that originate from1000-m-wide cells used by a new generation of land

cover mapping sensors. We provide alternative scale uncertainties in binary maps. Elsevier Science Inc.,
1999transformations, each with attendant assumptions and

limitations. The choice of method depends on spatial
characteristics of the land cover variables in question and
consequently may vary between biomes or with the in-
tended application. We extend the fractal similarity di- INTRODUCTION
mension renormalization method, previously developed

Accurate determination of global net carbon flux is per-for binary maps, to continuous variables. The method
haps the most urgent issue facing the ecological commu-can preserve both the mean and the multifractal proper-
nity (Churkina and Running, 1998). Loading the atmo-ties of the image, thereby satisfying a major goal, namely,
sphere with carbon in excess of the biosphere’s steadyto provide accurate areal estimates without sacrificing in-
state cycling capacity has many well-known implications,formation about within-site variation. The scale transfor-
including increases in global temperature (Schlesinger,mation enables the multifractal scaling exponents of land-
1991). The capacity of the biosphere for carbon involvesscapes or individual spectral bands to be brought in and
interactions among various processes such as water andout of register with each other, thereby opening another
energy supply, nutrient cycling, production, storage, anddimension upon which to detect the scales at which vari-
respiration. Remote sensing combined with process mod-ous land use or terrain processes operate. Alternatively,
eling and field validation offers the only currently feasi-landscapes can be selectively rescaled to highlight pat-
ble approach for assessing ecosystem capacities for car-terns due to particular processes. We recommend geos-
bon over vast regions. However, many crucialtatistical procedures with which to assess spatial charac-
assumptions are made in the course of relating fieldteristics both within a site and within individual image
measurements to the grid cells used in remote sensing
(Box et al., 1989). Accuracy assessment is virtually impos-
sible without expressions for the discrepancies between*Department of Biology, University of New Mexico, Albuquerque
estimates obtained from field plots and from remotely†USDA Forest Service, Pacific Northwest Research Station, For-

estry Sciences Laboratory, Corvallis, Oregon sensed imagery. The problem is compounded when the
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Table 1. Land Cover Variables Commonly Derived from Remotely Sensed Imagery for Use in Ecological Models

Variable Type Units Applications

Land cover Categorical, binary ha, % Model stratification, land use change, habitat characterization
LAI (one-sided) Continuous m2/m2 Transpirative surface in photosynthesis models
NPP Continuous g m22 yr21 Estimate of carbon fixation minus respiration
Plant cover Continuous % Basis of allometric relations to predict LAI; canopy models, phenology

In large cells, fluxes of energy and water may be regu- resolution Thematic Mapper (TM) imagery to prospect
for large MODIS cells within which to stratify field mea-lated by hydrological effects that occur at subcell scales

(White and Running, 1994; Rodrı́guez-Iturbe and Ri- surements.
By alleviating the bulk of routine processing burdensnaldo, 1998). Thus, functional linkages within individual

cells may violate the assumption that land cover types (Justice et al., 1998), the 42 standard MODIS products
will further increase the ecological community’s use ofand locations are independent, thereby necessitating a

nonlinear mixing model to predict carbon flux. remotely sensed estimates of biophysical quantities. Sev-
eral difficult issues are entailed when coarse spatial reso-Based on 36 spectral bands, MODIS will provide 42

standard data products describing atmospheric, aquatic, lution data are used. The major issue is to determine the
limits to which ecological models based on spatially de-and terrestrial conditions (Barnes et al., 1998). Of eco-

logical interest are estimates of land cover, biophysical tailed sensors, such as TM, can be applied to coarse res-
olution imagery from MODIS. Adoption of MODISproperties (Table 1), and hydrological inputs such as

snow, that are essential in all models of carbon, energy, amounts to a scale transformation that affects both the
design of validation studies and model formulation.and water flux from ecosystems. With global coverage ev-

ery 1–2 days, MODIS will provide unprecedented data Scale transformations can be viewed in two ways, ei-
ther as a cartographic problem or as an ecological oppor-of sufficient temporal resolution to unravel effects of cli-

matic variability, anthropogenic nutrient inputs, and land tunity. First, scale transformation is problematical in that
the spatial structure and corresponding geostatisticaluse practices on global productivity, with wide applica-

tion to problems of biodiversity, ecosystem organization, properties of a scene change with scale (Openshaw,
1984). Model calibrations developed at one scale are notand landscape function.

Traditionally, ecologists have estimated biophysical readily applied at others (O’Neill and Rust, 1979; Cale
et al., 1983; King et al., 1991) and may be further com-variables without much regard for location, as when net

primary productivity (NPP) and leaf area index (LAI) are plicated if many variables are of interest (Pierce and
Running, 1995). Errors introduced by scale transforma-used in nonspatial compartment models of ecosystems.

However, real-space models are needed to represent the tion potentially confound estimates of net primary pro-
duction (NPP), leaf area index (LAI), and land coverjuxtaposition of sources and sinks that affect fluxes of nu-

trients (Cooper et al., 1987). Similarly, canopy gap struc- type which are the products from MODIS and similar
sensors. Validation of coarse resolution maps with fieldture affects radiation inputs to the soil surface (Rich et

al., 1993) and nutrient cycling rates (Parsons et al., measurements is not simple and generally lacks reliable
theory to guide the process. Second, changes in apparent1994). Thus, ecologists need more complete knowledge

about the ability of coarse or medium resolution imagery landscape structure with changes in scale may provide
new information about the scale domains (Burrough,to represent the environment.

Field estimation techniques, and the operational def- 1983; O’Neill et al., 1991; Milne, 1988; Johnson et al.,
1992) over which particular processes operate (Jelinskiinitions of variables such as LAI (Barclay, 1998, Gower

et al., 1999, this issue), vary widely among studies. Varia- and Wu, 1995). Thus, purposeful changes in scale can be
used as tools to further ecological understanding oftion stems from physiognomic differences between

biomes and vegetation types that require different mea- process.
This study has two general goals: 1) to identify issuessurement techniques. MODIS will provide comparability

among biomes by providing simultaneous global esti- concerning spatial aggregation, validation, and error as-
sessment that will be encountered as MODIS is appliedmates which will need to be validated using field mea-

surements. Field estimation of productivity and LAI is a across diverse biomes, and 2) to recommend spatial ag-
gregation methods for use in modeling and validation ex-costly, time-consuming endeavor. In the best situations

estimation costs scale linearly with study size. Conse- ercises across a wide array of sites. A major antagonism
exists between the goals of projects conducted at dispa-quently, repeatable, accurate estimates based on re-

motely sensed imagery over wide regions for little cost rate scales. Namely, the MODIS estimates of NPP, LAI,
and land cover do not characterize subcell patterningare highly desirable, albeit subject to caveats (Baret and

Guyot, 1991). Here, we demonstrate how to use high that is both of interest to investigators at particular sites
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and a potential source of error at the 500–1000 m scale. tionary parameters. Then, both remote sensing and field
sampling amount to regularizations (sensu Jupp et al.,Thus, a focus of this article is to assess patterns within

cells that may alter MODIS estimates and simultane- 1988a,b; Atkinson and Curran, 1995), by which spatially
integrated or averaged measures of the random field areously limit the utility of MODIS estimates of biophysical

properties at finer scales. represented on a discrete lattice, that is, f(x) at many
points within each lattice cell (or image pixel) of length
L are mapped into a single value. Thus, the radiant fieldSTATISTICAL AND PROCESS is convolved with the sampling function of the sensor toORIENTED APPROACHES produce an image g(f(x),L). Clearly, spatial autocorrela-
tion affects the distribution of f(x) within the cell andOver several decades, two major bodies of theory have

developed in parallel to explain and exploit spatial vari- therefore the mean value in the cell. Regularization the-
ory is concerned with the statistical behavior of spatialability for many purposes. The first, geostatistics (Cres-

sie, 1991; Deutsch and Journel, 1992), has wide applica- autocorrelation and semivariance as functions of cell
length, or scale. The theory can: 1) be used to identifytion in the earth sciences, ecology, and the mining

industry. Geostatistics characterize spatial distributions of cell lengths that best enable detection of pattern (e.g.,
Hill, 1973), 2) characterize how variance changes withone or more variables, so that point measurements can

be extrapolated to unmeasured locations, as when pros- scale, as needed for geostatistical interpolation, and 3)
design field sampling strategies that minimize the num-pecting. Generally, the geostatistical extrapolations rely

on systems of equations or stochastic processes (Deutsch ber of subsamples needed to estimate mean quantities
such as biomass or leaf area index.and Journel, 1992) to obtain unbiased estimates of ore

densities, biomass, or other variables from scattered
point measurements. Fractal geometry (Mandelbrot, SPATIAL VARIABILITY1982) is the second major theory of spatial structure and
organization that is applied readily to terrain, river net- In an ideal world, land cover, NPP, LAI, and percent

live plant cover would be homogeneously distributedworks (Rodrı́guez-Iturbe and Rinaldo, 1998) coastlines,
clouds, and myriad other systems (Feder, 1988). Al- across the Earth’s surface so that mean values and vari-
though fractal geometry is used simply to describe pat- ances could be measured with quadrats of any size. Of
terns at many scales, several studies have focused on the course, geological and biophysical quantities are gener-
intimate links between dynamics and structure, to the ally correlated through space and time, giving rise to
point of demonstrating how energy dissipation produces nonrandom structure, patches, and clines. Spatial corre-
fractal structures (e.g., Jensen et al., 1985; Sommerer lations necessitate the use of geostatistics to extrapolate
and Ott, 1993; Rodrı́guez-Iturbe and Rinaldo, 1998). Re- measurements (Cressie, 1991; Deutsch and Journel,
cent derivations of fractal scaling laws via the renormal- 1992). Spatial and temporal (Bilonick, 1985) variation are
ization group (Wilson, 1979; Binney et al., 1993) rely on characterized by the semivariance c(h), which is the
detailed descriptions of stochastic processes and pur- mean squared deviation of a variable at locations sepa-
poseful changes in scale (Loreto et al., 1995). Despite rated by a given lag distance:
several superficial links between geostatistics and fractals

c(h)51/(2N(h)) o
N(h)

i51
(zi2zi1h)k, (1)(e.g., Burrough, 1981), there is little theory to link the

two fields. Given that virtually all fractal and renormal-
where zi is the variable at location i, N(h) is the numberization approaches entail many to one mappings, or regu-
of pairs of points separated by distance h and k is anlarizations, it is reasonable to expect a synthesis of regu-
exponent equal to 2 for the classical semivariance. Alarization theory with fractals and the renormalization
semivariogram is a graph of the semivariance versus lag.group so that both the statistical depth and process based
Setting k equal to 1/2 produces the semirodogram, whileexplanations of spatial complexity can be applied simulta-
k51 applied to the absolute value |zi2zi1h| produces theneously. As a first attempt, this article treads in both are-
semimadogram. These variograms emphasize broad scalenas, primarily by applying fractal geometry and renor-
structure, such as the lag at which the semivariancemalization theory to derive an expression for the
reaches an asymptote (i.e., the range; Cressie, 1991;geostatistics of indicator maps, which are at the root of
Deutsch and Journel, 1992). The indicator semivarianceregularization theory.
is measured by transforming zi to 1 if zi> a thresholdRegularization theory (Jupp et al., 1988a,b) provides
and 0 otherwise. Thus, the indicator semivariance is es-a single theoretical basis for the geostatistical properties
sentially that of a binary map, and thereby characterizesof both remotely sensed imagery and the selection of
patterns of nominal variables.field samples that are used to validate imagery. Formally,

The semivariance is relatively small when a variablewe envision a random field f(x), where x is a vector in
is correlated through space. Sampling with quadrats asspace, time, or both, and f(x) is a realization of an er-

godic, spatially continuous stochastic process with sta- wide as the range ensures that autocorrelation is sub-
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sumed, leaving statistically homogeneous sampling units tical properties of the map, while arbitrary regular-
that meet the assumption of independence (Hurlbert, izations of the elevation field do not. Thus, empirical and
1984). In general, though, ecological studies that focus theoretical studies of regularization should identify useful
on causal factors seek predictable relations between sys- scale transformations that preserve information needed
tem properties measured in small quadrats in the field to model landscape processes accurately. The exact regu-
(e.g., soil moisture and stomatal conductance). Unfortu- larization procedure will depend on the purpose.
nately, the homogeneity condition means that the varia- Considering the accuracy of MODIS measurements,
tion within quadrats is as large as that among quadrats, some major issues are: 1) whether MODIS estimates of
leading to nonsignificant models of system properties land cover variables (Table 1) are affected by within cell
based on remotely sensed measurements for which the structure, 2) how to avoid biased MODIS estimates that
cell size may exceed the semivariogram range of field may occur within a scene, and 3) how to use a priori
measurements (Friedl et al., 1995). Moreover, an as- assessments of spatial variation to minimize field sam-
sumption of a finite variance cannot be made where the pling efforts related to MODIS validation. We address
semivariance fails to reach an asymptote, as for example these issues primarily through empirical studies of imag-
along clines or within fractals (Mandelbrot, 1982). Com- ery and simulated regularizations.
parisons [Eq. (1)] along north–south versus east–west
orientations may produce different semivariograms due

ANALYSESto anisotropy, further complicating the statistical charac-
terization of pattern. Our discussion of spatial analysis focuses on characteriza-

Parametric interpolations based on the relation be- tions of within-cell variation to reduce the number of
tween semivariance and lag may entail an assumption of field sampling locations needed for estimates of mean
stationarity, or constant statistical conditions throughout values over a study area. We also consider components
the study area. Deutsch and Journel (1992) argue that of the semivariogram, such as the nugget, which can be
stationarity is an assumption implicit in parametric mod- decomposed to represent processes that contribute to
els, while nature may exhibit patterns for which paramet- pattern at various scales.
ric models are not readily constructed. Here, stationarity,
or the lack thereof, may affect various aggregation strate- Within-Cell Variation
gies and perhaps the accuracy of the MODIS sensor, in

We examined within-cell structure via semivariance anal-that behavior of a given method or sensor may vary
ysis of the Sevilleta LAI map and maps of the normal-throughout a map, or within pixels, generally in unknown
ized difference vegetation index (NDVI) for the Konzaways (e.g., Stoms et al., 1997).
Prairie and H. J. Andrews Long Term Ecological Re-A major insight from regularization theory is that the
search sites (LTER; Franklin et al., 1990). The threelength of a lattice cell, or pixel, affects precision directly
LTER sites represent a broad gradient ranging fromaccording to
semiarid grasslands (Sevilleta), to tallgrass prairie

c(h,L).c(h)2c(L2), (Konza), to conifer forest (Andrews), and thus provide a
wide range of vegetated conditions, both in absolutewhere c(h,L) is the semivariance at lag h measured using
quantity of biomass and spatial structure. We used 100(image) cells of length L, c(h) is the parametric semivari-
km2 subregions of the LTER sites for intensive studies.ance of the spatially continuous field f(x), and c(L2) is

The Sevilleta LAI map was created from an unsu-the within-cell mean semivariance; L2 indicates that aver-
pervised classification of 12 NDVI images, stratified byaging is over the area of the cell (Atkinson and Curran,
season, from TM imagery. Field samples in support of1995). Thus, regularization to cells of finite area de-
the mapping effort were obtained from 22 m diametercreases the image semivariance in proportion to L22

plots stratified randomly among 30 classes. Percent cover(Jupp et al., 1988a).
and height of each species, classified into guilds (i.e.,A second conclusion is that regularization entails a
forb, C3 grass, C4 grass, shrub, and Larrea tridentata, amany to one mapping of f(x) into g(f(x),L) and thus a
major shrub species which was treated separately) werereduction in the variance from which to mine predictive
used in regressions to calculate LAI (P. Kemp, personalrelations between variables. For example, if we wish to
communication). Each spectral class was then describedpredict LAI at a sample point, we might begin with an
by the mean LAI obtained from replicate field samplesimage measure of the normalized difference vegetation
of that class. Thus, the Sevilleta LAI map shows theindex (NDVI) and the relation LAI5f(NDVI). Of course,
mean LAI of the respective class.regularization has mapped a region L2 of NDVI values

To assess geostatistical variability within a biome, weto a single NDVI9, and an error will occur of size LAI2f
created one semivariogram for the Sevilleta LAI map us-(NDVI9). Recent applications of renormalization to ter-
ing lags <3.3 km (Figs. 1a and 2a). We hypothesized thatrain (Rodrı́guez-Iturbe and Rinaldo, 1998) show that ju-

dicial rescaling of drainage networks can preserve statis- one or more break points would be found separating
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Figure 1. Leaf area index for a 5325 ha portion of the Sevi-
lleta Long Term Ecological Research site. Brightness is pro-
portional to LAI. A) Original 28.5 m resolution; B) second
renormalized image [see Eq. (6)] to 114 m cell width; C)
continued renormalizations to 228 m; D) 456 m resolution.

scale domains (O’Neill et al., 1991) over which different
semivariogram models would need to be fit to minimize
the sum of squared residuals. We followed Stauffer and

Figure 2. Semivariance of leaf area index (LAI) inStanley (1989) and identified a critical lag in the semiva- the Sevilleta LTER. A) Analysis of 28.4 m wide cells
riogram by examining residuals from logarithmic and obtained from Landsat Thematic Mapper imagery; B)

variation among semivariograms of LAI in the 28.4 mpower laws that were fit preliminarily over the entire do-
wide cells within the entire 10,000 m2 area (largemain of lags. The critical lag was readily identified by
dots) and within successively larger pseudo-MODISresiduals equal to zero; increasing residuals away from cells ranging from 570 m to 10,000 m in length.

the critical lag indicated systematic errors that were
readily corrected by fitting different models below and

needed within a MODIS cell to characterize LAI for val-above the critical lag. With two models, the sum of
idation purposes.squared residuals over both domains was less than that

We evaluated this hypothesis by pooling TM cells toobtained from any single model.
form pseudo-MODIS cells (hereafter pMODIS cells) ofThe semivariance did not reach an asymptote at lags various widths. We then examined variation among semi-

,400 m (Fig. 2a), and was well characterized by a loga- variograms obtained within pMODIS cells (Fig. 2b). For
rithmic model. Thus, we expect field measurements to any given lag, semivariances varied over 2 orders of mag-
be correlated if separated by distances less than the MO- nitude. High semivariances within pMODIS cells oc-
DIS cell size. At lags .400 m, a power law fit the semi- curred where several contrasting land cover types con-
variances well (Fig. 2a), suggesting that LAI at the Sevilleta verged, as where dry streambeds, riparian woodlands,
exhibits fractal properties at these scales (Mandelbrot, and grasslands intersected (Fig. 1a). Repeated semivari-
1982, Burrough, 1981, Milne, 1991). Apparently, fractal ance analysis within larger and larger pMODIS cells re-
terrain with associated variation in soil resources, con- vealed a convergence of within-cell semivariograms on
trols plant patterning at broad scales. Since the semivari- the semivariogram for the entire study area, such that
ance did not reach an asymptote, no TM cells can be the semivariograms from the four pMODIS cells of
considered independent. By the same token, the strong length 4560 m were more similar to the overall semivari-
autocorrelation at lags ,400 m indicated less variation ogram than were those from the smaller pMODIS cells.
within MODIS pixels than among them. Thus, we hy- Thus, variation among high resolution cells should be

greater than among low resolution cells (Levin, 1992).pothesized that relatively few subsamples would be
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Figure 3. Semivariances at selected lag distances and mean values of leaf area index and NDVI from the
Sevilleta, Konza Prairie, and H. J. Andrews LTER sites. Semivariances and means were computed from TM
cells within 500 m wide pseudo MODIS cells. The dashed line indicates the semivariance of TM cells over
the entire image at the specified lag, h.

Sample Points for Field Samples be minimized by stratifying samples according to within-
cell variance (Fig. 3). Effort to estimate the mean LAIValidation efforts require sample points that efficiently
could be reduced by sampling from the set of MODISestimate statistical properties such as mean biomass or
cells that have small internal semivariances (e.g., c(h)LAI for comparison with MODIS estimates. One strat-
<0.05). However, since sensors should perform best inegy is to target MODIS cells that are internally homoge-
such circumstances, efforts to validate the sensor shouldneous, thereby requiring fewer samples to characterize
also be devoted to cells with high internal semivariances.the cell. To determine how within-cell variation affects
There, nonadditive spectral effects of mixed canopiesestimates of the mean, we used TM maps of LAI (Sevil-
could produce biased estimates of land cover properties.leta) and NDVI (Konza and Andrews) to measure and
We suggest that subsampling selected MODIS cells andcompare the semivariance and mean within pMODIS
using high resolution TM imagery to make area-adjustedcells. Data management practices that include resam-
estimates for the entire cell is an appropriate way of test-pling of imagery to match other archived data, such as
ing the accuracy of MODIS estimates. Thus, assessmentterrain and soil maps at the Sevilleta, Konza, and An-
of within-cell variation relative to the known LAI (Fig.drews sites, provided TM cell sizes of 28.4 m, 33.0 m,
3) can guide experiments to evaluate MODIS for poten-and 25.0 m, respectively (Fig. 3). Since we were inter-
tial bias due to subpixel variation.ested in the highest semivariance that could be encoun-

Three orders of magnitude variation in semivariancetered within a pMODIS cell, but wanted to avoid arti-
were also found for NDVI within pMODIS cells in thefacts from using too large a lag, we honored Nyquist
Konza and Andrews sites (Figs. 3b, c). These sites havesampling theory and restricted our lag to ,500/3 m
many sources of variation in vegetation and biophysical(O’Neill et al., 1996), thereby using 170.4 m, 165 m, and
traits due to successional age of the plant communities,150 m lags for the Sevilleta, Konza, and Andrews, re-
experimental burning treatments, and terrain. Nonethe-spectively. For reference, we used the corresponding
less, NDVI saturates 5–10 years after clearcut and is notsemivariance from an analysis of all the TM cells within
meaningful with respect to LAI at Andrews or Konzaeach 100 km2 study area. Preferred pMODIS cells for
(Turner et al., 1999, this issue). Even greater spatialvalidation efforts were those with less variability than
variation would be expected for spectral variables otherthe reference.
than NDVI, such as wetness, a component of the TMIn the Sevilleta, cells with c(170.4) below 0.108 were
tasseled cap relation (Crist and Cicone, 1984), since wet-remarkably close to the mean LAI (Fig. 3a). Cells with
ness is highly correlated with forest structure.low semivariance have uniform canopies, of either grass

or mixtures of shrubs and grass. Greater scatter and a
Semivariogram Decompositionsignificant correlation between semivariance and mean

LAI was apparent for c(170.4).0.108 (r50.49, n584, The nugget variance, or the semivariance at a lag of zero,
is a second useful characteristic of the semivariogram.P50.002). These highly variable pMODIS cells contain

mixtures of saltcedar (Tamarix pentandra) stands along The nugget measures the within-cell variance, sometimes
interpreted as sampling error (Atkinson, 1997). Cressieseasonally dry riverbeds adjacent to low LAI grasslands

(30–40% cover) and sparse shrublands. (1991, pp. 112, 130) decomposes the nugget into mea-
surement error plus variation due to stationary processesThus, field efforts to assess MODIS accuracy could
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Figure 4. Semivariance of normalized difference vegetation
index for the H. J. Andrews LTER based on Thematic Map-
per (TM) imagery and on means of TM cells within 500 m
wide blocks.

that occur at subpixel scales. For example, broad scale, tracted from pMODIS cells (Fig. 4). An explanation for
among MODIS cell variation may be controlled by ter- this comes from the related observation that two loga-
rain, but variation within MODIS cells could be due to rithmic models were needed to characterize the semiva-
animal burrowing or treefall gaps that create microscale riogram of TM cells (Fig. 4). The logarithmic model that
pattern. The subcell process has its own inherent varia- fit semivariances for lags ,400 m shared similar coeffi-
tion at all lags shorter than the length of the cell. Here, cients to that of the semivariogram for means from
the semivariance of TM cells characterizes the processes pMODIS cells (Fig. 4). Thus, averaging NDVI within
within the pMODIS cells. If, for example, we average pMODIS cells cast the geostatistical properties of the
NDVI from the TM cells within each pMODIS cell, fine scale TM imagery up to the pMODIS cells. If the
then the semivariance of the mean values can be decom- MODIS sensor effectively averages, then we predict that
posed as in Eq. (2): geostatistical properties of MODIS images will be fit by

the same semivariogram formulae used for high resolu-2cpMODIS(0)52cTM(0)12r2
error, (2)

tion images analyzed with lags <the length of MODIS
where cTM(0) is the nugget variation of TM measure- cells (see also Jupp et al., 1988b). Thus, if averaging oc-
ments within pMODIS cells and r2

error is the variance of curs, MODIS should capture fine scale geostatistical
the measurement error associated with TM cells. properties of surface roughness and ground cover while

Similarly, the decomposition can be applied to the
rendering them at relatively coarse scales. In otherentire semivariogram, in which case [Eq. (3)]
terms, averaging may protect variation among the large

2cpMODIS(h)52cW(h)12cTM(h)12r2
error, (3) cells from attaining the range, and thereby preserve the

ability of independent variables to predict ecological re-which includes variation due to a smoothly varying pro-
sponses, such as NPP, at the broad scale.cess (W) whose semivariogram range is greater than the

In summary, the semivariance analyses illustrate thedistance between adjacent pMODIS cells; that is, it con-
magnitude and nature of variation that can be expectedtributes to autocorrelation among the pMODIS cells.
within MODIS cells. Sampling efforts can be minimizedThis decomposition provides an hypothesis for evaluating
where semivariances are small and can be exploited totransformations of maps from fine to coarse resolution;
test MODIS estimates where they are large. The sim-namely, the semivariance of the coarse resolution image
plest null hypothesis is that the accuracy of MODIS esti-should be related to the variance of finer grained mea-
mates is the same regardless of within-cell variation.surements taken within the cells.
Evaluations across sites might reveal interactions be-As an example, we used NDVI measurements of the
tween biome and semivariance, possibly due to satura-Andrews and evaluated the relationship between the
tion of NDVI at high LAI values in forested regions.semivariogram of the TM cells and the semivariogram of
Given these considerations, we next review various spa-mean NDVI calculated within 500-m-wide pMODIS
tial aggregation methods by which fine scale data can becells. Based on smaller TM cells, the within-pMODIS

semivariance was greater than that among means ex- cast to cell sizes comparable to MODIS products, gener-
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ally for use in models to predict NPP for comparison oped in studies of critical phenomena in physics, where
phase transitions occur at particular densities or temper-with MODIS.
atures. In these situations, models based on averages
cannot characterize the geometric properties of the sys-

AGGREGATION METHODS tem, largely because spatial correlations exist over vast
distances and there is no particular scale or quadrat sizeThere are many challenges in the transformation of eco-
in which to estimate a mean or variance. A homologoussystem characteristics from fine to coarse scales. One
problem occurs when assumptions of geostatistical sta-challenge stems from the idiosyncracies of the land cover
tionarity are not valid or when variance increases steadilyvariables themselves (Table 1). Units of measure differ
with scale (Mandelbrot and Wallis, 1969); both are com-among the variables, so care must be taken to construct
mon in nature and notoriously difficult to represent byrescaling procedures that preserve the units of measure
Gausian distributions (e.g., Stanley et al., 1996). Becauseso that the resulting map remains useful for modeling.
landscapes share phase transition properties with physi-Here, we divide the variables into two categories: binary
cal systems (Milne et al., 1996; Keitt et al., 1997), theand continuous. For example, a typical thematic vegeta-
theoretical depth of renormalization provides tools fortion map is the union of a set of binary maps; pixels are
solving many scale transformation problems in ecologycoded as one and only one vegetation type. In practice,
and remote sensing.the many binary maps implicit in a thematic map can

A successful renormalization involves identificationbe translated into multivariate continuous measures by
of a quintessential property of a system to preserve whilemoving window techniques (Milne, 1991) or logistic re-
reducing the number of cells on a map. After renormal-gression (Strauss, 1992). In contrast, continuous variables
ization, the map will retain a particular property if it wassuch as elevation, LAI, and potential evapotranspiration
there to begin with. In that sense, renormalization canrequire aggregation techniques that preserve the units of
be viewed as a multiscale filter. For example, the nitro-measure and statistical moments such as the mean. Here,
gen fixing capabilities of Alnus make it a biologically sig-we address the various aggregation alternatives in turn
nificant component of the Pacific Northwest landscape.and use spatial renormalization theory to derive an ap-
Since alder covers ,5% of the landscape, some aggrega-proximation of the semivariance of random maps and
tion procedures, such as the majority rule, would elimi-thereby link the renormalization aggregation methodol-
nate the smallest alder patches in translations of 25 mogy with classical geostatistics.
cells to 1 km (Benson and MacKenzie, 1995). However,
use of a presence/absence rule would ensure its occur-Binary Variables
rence on the coarse map.The simplest land cover map is binary, in which cells

The rate at which information is degraded by renor-have one of two states. A thematic map is simply the
malization can be assessed. There are two cases: 1) whenunion of several binary maps. Various intuitively reason-
the states of cells are independent and 2) when autocor-able aggregation approaches can be used (e.g., nearest
relation exists among the cells. When cells are indepen-neighbor resampling, majority rule, presence/absence;
dent, simple analytical expressions can be written for theTurner, 1989) in concert with theoretical frameworks to
changes in land cover with changes in cell length, thatmanipulate the aggregation process (Milne et al., 1999).
is, when the nugget of the indicator semivariance equalsHere we present a proportional reclassification method
the variance or when cell width exceeds the range. Forand review spatial renormalization of binary maps in an-
example, consider the majority rule implemented by di-ticipation of a continuous renormalization method to
viding a binary map into blocks of 2 by 2 cells. Occupiedfollow.
cells occur in various configurations, including the fourProportional reclassification to a coarser scale begins
ways of having one occupied cell, six ways of having twowith a thematic map obtained at relatively fine scale
occupied cells, four ways of having three occupied cells,(Fig. 5). Then, a coarse grid is superimposed on the map
and one way of having all four occupied (Gould and To-and the proportion of each class within each coarse cell
bochnik, 1988). Any block of cells that has a majority ofis determined. Thus, several new maps describe the rela-
occupied cells is reclassified as occupied. Of course,tive proportions of each class. The resulting vectors of
since occupied cells occur with probability p and unoccu-proportions can be subjected to cluster analysis to obtain
pied cells with probability 12p, a particular configura-a cover map at the coarse scale or can be used as depen-
tion, say three occupied and one unoccupied cell, occursdent variables in regression models to investigate the ef-
with probability 4p3(12p). Thus, assuming indepen-fects of independent variables on landscape composition.
dence, we can write a renormalization function to de-Aggregation strategies benefit from the broader the-
scribe the proportion of occupied blocks after one appli-ory of renormalization (Gould and Tobochnik, 1988;
cation of the rule:Creswick et al., 1992; Binney et al., 1993; Milne and

Johnson, 1993; Milne, 1998). Renormalization was devel- p951⁄26p2(12p)214p3(12p)1p4
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Figure 5. Proportional reclassification of the H. J. Andrews MODLERS site cover map. The original
map (upper left) was developed from Landsat TM data and has a cell size of 25 m (Cohen et al., 1995).
Tallies of each class within nonoverlapping 1-km-wide cells were mapped separately in hues that corre-
spond to the TM classification color scheme. Intensity of the derived maps is proportional to the relative
proportion of the class in the cell.

Although the binary representation of the landscape53p2(12p)214p3(12p)1p4

may not be very useful when rendered so coarsely, occu-5p2(322p), (4)
pied blocks for large L indicate where a more completewhere the coefficient in the first term accommodates ties
or detailed representation of relevant processes is war-when two cells are occupied. Thus, we can write other
ranted. Multiscale approaches are very useful in ecology,renormalization rules (Milne and Johnson, 1993) and
in which a complete system model may be composed ofapply them for scale transformation when cells are inde- submodels in different forms (e.g., ordinary differential

pendent. Unfortunately, independence is a special case, equations, individual based models) rendered at spatial
and does not exist at lags shorter than the range (Fig. 2). and temporal scales that may vary among submodels. For
Thus, other characterizations must be made for empiri- example, where physical conditions change abruptly, as
cal systems. at ecotones, higher spatial resolution may be required to

The so-called box scaling relation (Feder, 1988) is accommodate large within-cell variance (Milne et al.,
an effective and simple aggregation expression for fractal 1996). Large semivariances within a block (Fig. 2b) may
landscapes in which autocorrelation exists and a simple indicate the presence of some large structure, such as a
presence/absence aggregation rule suffices. For example, river, that traverses the block. Such structures are eco-
models of stream biogeochemistry and validation of MO- logically important because they regulate flows of matter
DIS imagery would seem to require maps of nitrogen and energy across landscapes (Forman, 1995). In model-
fixing trees at very fine scale. Thus, a presence/absence ing effects of water and energy supply on ecosystem pro-
renormalization could be applied by inspecting each 2 by cesses, it is desirable to represent the structures created
2 block of cells on a map and retaining the entire block by several cells together, as, for example, on terrain
if it contains at least one cell occupied by alder. Since maps, where distant peaks affect energy inputs via shad-
stream geometry and flow induce both statistical and ing (Dubayah, 1994). Thus, the probability scaling rela-
functional autocorrelation, respectively, the simple prob- tion [Eq. (5)] for binary maps provides information anal-
abilistic representation [Eq. (4)] of scale dependence ogous to the semivariance [Eq. (1)] for continuous
cannot be used. Rather, we tally the number of blocks measures.
occupied as the map is subjected to a series of renormal- In anticipation of a new aggregation technique for
izations. Cells are first aggregated into blocks of 2 by 2 continuous variables, described below, we briefly review
cells, and then blocks of 2 by 2 blocks are aggregated, Milne and Johnson’s (1993) renormalization technique
to represent 16 cells, etc. For fractal patterns, the num- that maintains the similarity fractal dimension, and thus
ber of occupied blocks N(L) of length L scales as kL2D, among-cell correlations, as a binary map is aggregated.
where k is a constant and D is the box fractal dimension. For L51 we define the similarity dimension D(1)5ln N/
The number of blocks (i.e., boxes in the fractal litera- ln E (Mandelbrot, 1982), which is the ratio of the loga-
ture) can be expressed as a probability by dividing N(L) rithmic number of occupied cells to the logarithmic ex-
by (E/L)2, which is the number of boxes that could fit on tent of the map. At coarser resolution, we expect the

proportion of the occupied map to vary as in Eq. (5).a square map of length, or extent, E. Substitution from
Thus the number of occupied cells needed to satisfy thethe scaling relation gives
scaling relation is R(L)5(E/L)D(1) for L>2. The goal is to

p9(L)5(k/E2)L22D. (5) place R(L) occupied cells on the coarser resolution map
Thus, both a statistical characterization and maps at each in such a way as to preserve as much as possible the spa-

tial autocorrelation of the finer resolution map.scale are produced for modeling purposes.
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In practice, the renormalization begins by identifying the new, larger cells, where E is the number of unit cells
along one edge of a square map and d is obtained at theall nonoverlapping blocks of 232 cells (where blocks are
unit scale L51. First we sum the continuous variable zinow of length L and cells of length L/2); blocks are la-
to obtain d5ln M(1)/ln E. The exponent d is then usedbeled according to the number of occupied cells they
to constrain the allocation of the renormalized masscontain. Then, a frequency distribution is generated to
M(L) for L>2 to each of the new, larger cells throughoutdescribe the number of blocks f(m) with m54, 3, 2, or
the aggregation process. Thus, the portion of the integral1 occupied cells. Next, f(4) of the R(L) cells are placed
in each cell of length L is pi(L)5o zj(L/2)/o zi(L/2),in the blocks of length L that have four occupied cells.
where 1) the numerator is summed over all four cells ofOnce those are satisfied, the R(L)2f(4) remaining cells
length L/2 that compose the new block of length L, 2)are allocated to the blocks with the highest occupancy
the denominator is summed over all cells on the maprates until a frequency class that cannot be completely
such that opi(L)51. A second exponent, the Lipschitz–allocated is found. Then, the remainder of R(L) cells are
Hölder exponent, is used to express pi(L) as a functionallocated randomly to blocks of the incomplete class. The
of L, that is, pi5La (Mandelbrot, 1982), where a has anend result is a renormalized map that preserves the
implicit subscript i. Thus, new cells of length L are as-broad scale correlations and minimizes the rate of
signed a renormalized value zi(L) by prorating a portionchange dp9(L)/dL (Milne and Johnson, 1993), thereby
of the renormalized sum to each:reducing distortion of the map. Such aggregations are of

use when a model at coarse scale is expressed in terms zi(L)5pi(L)M(L)
of parameters that are highly variable at fine scales. 5La2dEd (6)

Allocation of M(L) to each cell is both a function of theContinuous Variables
local density, which preserves the spatial pattern over the

Models of net primary production are driven by continu- image, and the global mass, represented by Ed.
ous variables that capture relevant aspects of vegetation As an example, a square 5323 ha region (E5256) of
structure or energy supply (Prince and Goward, 1995) at the Sevilleta LAI map was rescaled to coarse resolution
arbitrarily coarse resolution. For example, surface following Eq. (6) (Fig. 1). After rescaling to 456 m reso-
roughness and shade are structural features that affect lution, the mean LAI equaled 93% of the mean LAI
water flux and the energy balance within the canopy (1.147) at 28.5 m. A t-test for differences between mean
(Jensen et al., 1989), yet such variation is easily sub- LAI at the two scales, assuming unequal variances, gave
sumed at 3021000 m cell sizes. Here, we present a spa- t50.143 (p.0.05), indicating that the original mean
tial aggregation method that preserves geometrical as- was preserved.
pects of land cover so that the relevant consequences of Given its reliance on a, the renormalization should
aerodynamics and radiation fluxes can be represented preserve not only the mean value but also the geometri-
meaningfully in models. Fortunately, canopies exhibit cal properties of the image. We used multifractal mea-
statistically regular, predictable changes in geometry with sures (Halsey et al., 1986; Feder, 1988) to characterize
scale (Milne, 1991; Milne et al., 1996; Menenti et al., the geometry and to study its behavior with changes in
1996; Pachepsky et al., 1997) that we exploited in a new scale. Multifractals enable an image to be partitioned
aggregation method suitable for continuous measures into subsets of varying intensity, thereby enabling the
such as LAI. fractal geometry of each subset to be described indepen-

Our method preserves both the mean and the spatial dently. Partitioning leads to the notion of an image as
arrangement of a continuous variable over the study the union of a set of images that are nonzero in some
area. We use a scaling exponent, namely, the Lipschitz– locations and zero in most others. The partitions are in-
Hölder exponent (Mandelbrot, 1982; Feder, 1988) to dexed by q with which the set of associated cells that
characterize the relationship between scale, or cell length contain nonzero values number N(q,e), where e is the
L, and the local concentration of the variable. By pre- fraction of the extent occupied by a single cell. By defini-
serving the mean at each scale, the method avoids bias tion, the mass exponent
that might otherwise creep into a coarse resolution map,
as, for example, by local averaging. s(q)5 2lim

e→0

ln N(q,e)
ln e

5 2lim
(E/L)21→0

ln opq
i (L)

ln (E/L)21
(7)

At successively coarser scales, we obtain new values
of a continuous variable zi in each cell i51, 2, 3, . . ., characterizes the scaling behavior of many subsets of the
n(L) by aggregating cells in a log2 series, for example, image, indexed by q. Low values of q emphasize small
L52, 4, 8, . . . . Following the logic of Milne and John- pi(L) and high q emphasize large values. When q50, the
son’s (1993) preservation of a scaling exponent across summands in Eq. (7) all equal 1, thereby providing a
many cell sizes, we conserve the sum, or “mass,” count of nonzero cells. When all zi(L).0, s(q)52, which
M(1)5o zi of a continuous variable over the landscape is the dimension of the plane in which the image resides.

In the limit as L→0, the exponent forms a monotonic,by allocating a renormalized mass M(L)5(E/L)d among
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Figure 6. Mass exponents s(q) for
maps of leaf area index and normal-
ized difference vegetation index
(NDVI) from the Sevilleta and Konza
LTERs, respectively. Each curve rep-
resents exponents obtained after re-
normalization of images to larger cell
widths. Inset: semivariogram of NDVI
for the Konza LTER.

decreasing function of q (Halsey et al., 1986). Thus, devi-
ations between the s(q) curves obtained at various L pro-
vide measures of aggregation error.

Under renormalization, the Sevilleta LAI map exhib- Figure 7. Normalized difference vegetation index (NDVI)
for a 7136 ha portion of the Konza LTER. Brightness is pro-ited a remarkable preservation of the s(q) function (Fig.
portional to NDVI. A) Original 33.0 m resolution; B) second6), indicating that the coarse resolution map contained
renormalized image at 132 m cell width; C) continued re-the same geometrical structure, or more specifically, par- normalization to 264 m; D) 528 m resolution.

titioning of LAI among cells, as the finest scale map.
Given the reiterative fashion in which the renormalized
mass is constructed [Eq. (6)], and the consequent lump-
ing of adjacent cells over hundreds of meters, the con-
stant spectrum of mass exponents indicates that much of
the geometry present at the finest scale in the Sevilleta
has been preserved. Such is not always the case. In
applying the renormalization to the Konza NDVI image
(Fig. 7), we found changes in s(q) with L (Fig. 6). First,
the finest scale Konza map had a different s(q) curve
from that of the Sevilleta LAI for q,0, suggesting that
low NDVI values at Konza and low LAI at Sevilleta were
governed by different processes at that scale (see Solé
and Manrubia, 1995); curves were indistinguishable for
q.0. For negative q the visually apparent differences in
the distributions of low LAI and NDVI values on the two
landscapes (Figs. 1a and 7a) explain differences in the
mass exponents (Fig. 6). Interestingly, renormalization to
L5132 m (Fig. 7b) brought the Konza s(q) curve pre-
cisely onto that of the Sevilleta for all q, while further
renormalization moved the Konza curve off the Sevilleta
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curve, both below and above q50. Comparison of the nontrivial fixed point of the renormalization, reflecting
the 50:50 rule by which ties are resolved during the spa-Konza 132 m map (Fig. 7b) with those of the Sevilleta

(Fig. 1) suggest that the riparian areas dominate the im- tial aggregation process. Iteration reveals a fundamental
property of a map, in this case, whether a particular landage at 132 m in the Konza, leading to similar s(q) curves.

At broad scales (300–2000 m), the semivariogram for cover class is in the majority, or not.
Here, we use renormalization to examine how theKonza (Fig. 6 inset) exhibited a power law with an expo-

nent equal to 0.105, corresponding to a fractal dimension indicator semivariance behaves with a coarsening of
scale. In so doing, we reveal fundamental spatial proper-of 1.94 (Burrough, 1981), which being close to 2, testifies

to the homogeneous appearance of the NDVI at coarse ties of the binary transformation zi→{0, 1} of continuous
variables and define characteristic densities and semivari-resolution (Fig. 7d). Other processes, such as land use

practices and experimental burning treatments that con- ances of random maps. The results provide a means of
detecting spatial scales at which independence istrol patch boundaries visible at 66 m (Fig. 7a), were ap-

parently more important at fine scales. Thus, multifrac- achieved and makes standard geostatistical theory com-
plementary to multifractal analyses.tals illustrated a great potential to both: 1) classify

landscapes that share similar s(q) curves as being con- For convenience, restricting the lag to h5L51 (i.e.,
zi is compared to zi1L in the north, south, east, and westtrolled by similar processes and 2) select scales at which

to render landscape patterns controlled by particular directions only) reveals that various block configurations
produce particular sums of squared differences [Eq. (1)].processes.
For example, in the trivial cases of empty or full blocks,
all possible pairwise comparisons produce (zi2zi1L)250Derivation of Semivariance by Renormalization
because there is no within-block variance. However, withOur goal of aggregating fine scale maps of continuous
one or three occupied cells the respective sums ofand binary, or thematic, variables (Table 1) requires con-
squared deviations equal 4. Two occupied cells situatedsideration of how changes in cell size relate to standard
orthogonally to one another produce a squared deviationgeostatistical properties. Here, we describe a fundamen-
of 4; diagonally arranged duplets yield a squared devia-tal relation between the geostatistics of continuous versus
tion of 8.binary land cover variables. The relation has implications

Thus, the configurations that contribute to nonzeroboth for the expected values of geostatistical measure-
values for the indicator semivariance are those with one,ments and for the representation of ecologically relevant
two, or three occupied cells. To maintain accurate in-spatial features, such as stream networks and landforms.
tercell distances of i1L, we restrict the 2-cell cases toHere we consider the indicator semivariance (Deutsch
those having occupied neighbors in the cardinal direc-and Journel, 1992), defined as the semivariance of a bi-
tions, of which there are four configurations. Each rele-nary indicator variable zi at location i, which is assigned
vant configuration occurs on a random map, or equiva-a value of 1 whenever a continuous variable yi is greater
lently on a map rendered with cells of length equal tothan an arbitrary cutoff value and 0 otherwise; the trans-
the range, at rates equal to 4p(12p)3, 4p2(12p)2, andformation produces a binary map. After making the indi-
4p3(12p) for the 1-, 2-, and 3-cell cases, respectively.cator transformation, the semivariance is computed from
Thus, upon renormalization, a map beginning with p oc-the zi’s as in Eq. (1). In the spirit of spatial renormaliza-
cupied cells obtains a new proportion p9 according totion (e.g., Gould and Tobochnik, 1988), it is useful to

consider how the various configurations of zeros and p954p(12p)314p2(12p)214p3(12p)
ones within 232 blocks of cells contribute to the indica-

54 o
3

m51
pm(12p)42m. (8)tor semivariance and how these contributions change as

a map is rendered at ever coarser resolution.
Recall again the majority renormalization rule (Turner, The expected indicator semivariance for h5L can be

written using the renormalized probability. The number1989), in which 232 cell blocks are inspected, and the
entire block is relabeled according to whichever class is of blocks containing m occupied cells on a map is always

(E/L)24pm(12p)42m since there are four equivalent rota-in the majority; ties are settled by flipping a coin. Thus,
the proportion of a random, binary map that is still occu- tions of each configuration. The expected semivariance

is obtained by weighting the number of blocks of eachpied after majority rule renormalization is p953p2(12p)21

4p3(12p)1p4. Terms in the equation describe the num- configuration by the respective sum of squared devia-
tions [Eq. (1); i.e., four in each case) and dividing byber of ways of obtaining two, three, or four occupied

cells in a block such that the majority rule is satisfied. twice the number of comparisons, including those made
in the empty and full blocks. Since there are eight cell-to-Iteration of the function reveals that maps beginning at

p50.5 remain so, while maps with p,1/2 converge on cell comparisons within each block, the total number of
comparisons on the map is 8(E/L)2 and the semivariance.p50; maps with p.1/2 converge on p51. Thus, 1/2 is a



94 Milne and Cohen

In general, spatial aggregation of land cover maps will be
governed by the transient dynamics with great sensitivity
to the initial configuration of occupied cells.

To investigate the predicted indicator semivariance
[Eq. (9)], we constructed binary maps by thresholding
the Konza and Sevilleta maps at approximately p50.5
(Fig. 9). We renormalized the maps by the indicator rule
and measured the semivariance [Eq. (1)] at each scale.
We predicted: 1) that the observed semivariance and p9
would converge on c*(h) and p* as h approached the
range, thereby indicating membership in the class of ran-
dom maps, and 2) that the semivariance and density of
images rendered at scales finer than the range would de-
viate from the fixed points, thereby indicating nonran-
dom structure. We included five random maps (p50.5)
of the same size for comparison with the empirical maps.

After the transient period, Eqs. (8) and (9) converge
on a fixed point with coordinates c*(h), p* for all initial
p (Fig. 10). Thus, the model predicts the well-known re-
sult that random maps exhibit the same semivariance at
all scales. Renormalization of the empirical binary images
(Fig. 9) produced trajectories of semivariances and asso-
ciated probabilities that deviated from those of random
maps (Fig. 10) until cell sizes approximated the range.
We tested the ability of the model to predict c(L532)
and p* of random maps. There was no significant differ-

Figure 8. Simulated renormalization trajectories ence between the renormalized probabilities and the
of the probability of having occupied cells at suc- predicted (t521.67, P50.17, N55) but the observed
cessively coarser scales [Eq. (8)]. A) Example semivariances were significantly higher than expectedtrajectories as a function of the number of cells

(t58.77, P50.0009, N55). Renormalizations based on(L) along one edge of square renormalized ran-
small blocks are known to have small biases (Gould anddom maps; B) successive probabilities p9 ob-

tained from initial probabilities p. The labeled Tobochnik, 1988) because of artifacts that creep in as
curves indicate the renormalized values after two adjoining blocks conspire on the real map to pro-
changing to cell widths of 2 and 4 unit cells. As duce configurations that are not represented in theL increases, p9 reaches a constant value of 0.68.

model. Nonetheless, a better renormalization relation
might be found that incorporates block-to-block corre-
lations.

c(h)5
16(E/L)2op9m(12p9)42m

16(E/L)2 In light of sharing identical mass exponents at L54
(i.e., cell widths of 114 m and 132 m in the Sevilleta and
Konza, respectively; Fig. 6), the proximity of renormal-

5op9m(12p9)42m. (9)
ized p and c(L) at these scales (Fig. 10) suggests the

The effects of increases in block length, or equiva- same similarity. However, since the Sevilleta trajectory
lently lag, are investigated by iterating the renormaliza- explores a range of values, despite exhibiting identical
tion relation, starting with a given p, to reveal the asymp- mass exponents at all scales (Fig. 6), the semivariance
totic behavior of the map upon aggregation. Transient and p alone appear insufficient to identify patterns
behavior is common for one to 10 or more iterations, driven by a given process.
corresponding to increases in cell length L from 1 to There are rich implications for scale transformations
1024 or more (Fig. 8a). Eventually, all initial p values of binary or thematic maps. First, the ultimate configura-
lodge at 0.68, which is a stable point of Eq. (8). Some tion of occupied cells at the coarse resolution is ex-
initial p reach the stable point at finer scales than others, tremely dependent on, or sensitive to, the configuration
due to the nonlinear nature of the discrete mappings of cells on the original map, since the number of itera-
from one scale to the next (Fig. 8b). Some maps require tions required to reach the stable probability varies with
.20 iterations to reach asymptotic behavior measurable the original p (Fig. 8a). This is due to the way in which
to four decimal places. This is equivalent to increasing blocks of cells are first reclassified, only to form new
the original cell size L from 20 to 220, or decreasing the blocks with their neighbors at a coarser resolution. Many

permutations of occupied cells exist, leading to idiosyn-10,000-m-wide LTER study sites to a width of 9.5 mm.
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Figure 9. Renormalization of binary
images for the Konza LTER (panels
A–D) and the Sevilleta LTER (E–H).
White regions indicate values below the
50th (Konza) and 66th (Sevilleta) per-
centiles of NDVI and LAI, respectively.
The indicator rule was used in each
case and the renormalized images mag-
nified to show detail.

cratic neighborhood geometries or polygon shapes. Sec- is extremely sensitive to measurement or classification
errors on the original map, since errors both alter theond, the origin of this sensitivity is implicit in the cre-

ation of the indicator variable. Specifically, once yi is initial p value and produce errors in the configurations.
Fourth, the fluctuations in the probabilities with scalethresholded to 0 or 1, information is lost as to exactly

how different the y values were in two adjacent cells. In will induce fluctuations in the indicator semivariance.
In contrast, nonrandom binary maps have nontrivialsome cases, adjacent cells may differ little, but if they

span the classification threshold, they will be segregated spatial correlations among the block configurations
(Milne, 1992) and a function other than Eq. (9) is neededinto two classes, as would two neighboring cells with y

values in opposite tails of the distribution. Thus, preci- for the expected semivariance. The spatial correlations
among block configurations can be modeled by measur-sion is sacrificed, and the price is uncertainty about the
ing the scale dependent, perhaps fractal, geometry of thedisparity between cells. Third, the indicator semivariance
configurations [Eq. (5)]. As above [Eq. (9)], all occupied
cells that are in the orthogonal 2-cell configurations are
retained while diagonally connected 2-cell blocks are ig-

Figure 10. Renormalization trajectories of the semivari- nored. Thus, assuming isotropy so that each of the four
ance and the probability of having occupied cells. Iteration possible rotations of each block are included, the renor-of the model [Eqs. (8) and (9)] starting with various ini-

malization relation for the proportion p9 becomes Eq. (10):tial probabilities p yields the parabola which collapses to
c*(h) and p* (dashed lines) at coarse scales. Analyses of

p9(L)54/E2 o
3

m51
cmL22D(m), (10)empirical maps from the Sevilleta and Konza and of ran-

dom maps (solid squares) are included. Numbers 114
and 132 indicate selected cell lengths (m) for the Sevilleta where D(m) is the box dimension of blocks containing m
and Konza, respectively. occupied cells. The behavior of p9(L) as a function of L

will depend on the map. Analogous functions could be
made if the number of occupied blocks varied logarith-
mically or exponentially with scale.

CONCLUSIONS

Our first goal was to identify major issues involving the
use of MODIS as a source of ecological information. For
one, new sensors involve an implicit change in scale from
the traditional 1 m2 quadrats used in the field to the
500–1000-m-wide cells. Changes in scale alter the appar-
ent geostatistical properties of the landscape, including
subpixel variation (i.e., the nugget), the apparent effect
of processes that affect the nugget [Eq. (2)], the lags
over which patterns are nonrandom, and the averaging
accomplished by the coarse spatial resolution sensor.
However, changes in scale provide an important tool
with which ecologists can search for novel patterns of
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system organization and dynamics. Simultaneously, rela- scribes the relative percentages of land cover types ob-
served at fine scale (Fig. 5).tions are needed to translate patterns and estimates from

one scale to another (King et al., 1991), as basic quanti- Spatial aggregation of continuous variables creates
opportunities for novel classifications. To filter variablesties such as the number of lakes on a landscape change

with scale (Benson and MacKenzie, 1995). Second, at different scales, one could use spectral bands or de-
rived variables that have been aggregated to differentknowledge of subcell patterning is needed to design and

implement field campaigns to validate MODIS estimates. scales and resampled to a common scale before classifi-
cation. For example, aggregation of near-infrared bandsClearly, geostatistical evaluations at subpixel scales are

useful for identifying locations to sample mean values to very course scale to obtain independence of pixel val-
ues, combined with a finely resolved visible band, mightwith least effort (Fig. 3). Third, ecologically relevant flow

networks may be obscured by coarse resolution imagery enable better representation of advective energy fluxes
due to high albedo from small features. Likewise, nonlin-obtained by averaging (Rodrı́guez-Iturbe and Rinaldo,

1998), as, for example, where detrital pools affect nutri- ear mixing of spectral signatures at coarse resolution
might be investigated by renormalizing each band to sev-ent concentrations downstream, or where fires passing

through networks of fuel effectively connect distant loca- eral scales and then using multivariate analysis to deter-
mine the band and scale combinations most related totions. Coarse depictions of landscapes may obscure eco-

logically relevant information that pertains to fine-scale the coarse resolution imagery. Recent work with “fractal
regularizations” and multiscale data structures (Chou etprocesses.

Major errors may be produced if nonlinear func- al., 1994) provide examples. Thus, purposeful manipula-
tion of image resolution through geostatistical analysistional relations are applied to linearly transformed imag-

ery (Cale et al., 1983). Wilson (1979; 1983) explains that and spatial aggregation constitutes a general strategy for
formulating new predictions based on remotely sensedrenormalization effectively drives a map into another re-

gion of parameter space. For that reason, we would ex- imagery.
pect the nonlinearly renormalized map to behave differ-
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77:805–821. Global Change, Academic, San Diego, 443 pp.
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